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Unstable modes of a linear shear flow in shallow water on an equatorial β-plane
are obtained over a wide range of values of a non-dimensional parameter and
are interpreted in terms of resonance between neutral waves. The non-dimensional
parameter in the system is E ≡ γ 4/(gHβ2), where γ , g, H and β are the meridional
shear of basic zonal flow, gravitational constant, equivalent depth and the north–
south gradient of the Coriolis parameter, respectively. The value of E is varied within
the range −2.50 � log E � 7.50.

The problem is solved numerically in a channel of width 5γ /β . The structures of
the most unstable modes, and the combinations of resonating neutral waves that
cause the instability, change according to the value of E as follows. For log E < 2.00,
the most unstable modes have zonally non-symmetric structures; the most unstable
modes for log E < 1.00 are caused by resonance between equatorial Kelvin modes
and continuous modes, and those for 1.00 � log E < 2.00 are caused by resonance
between equatorial Kelvin modes and westward mixed Rossby–gravity modes. The
most unstable modes for log E � 2.00 have symmetric structures and are identical
with inertially unstable modes. Examinations of dispersion curves suggest that non-
symmetric unstable modes for 1.00 � log E < 2.00 and inertially unstable modes for
log E � 2.00 are the same kind of instability.

1. Introduction
It has been considered that inertial instability occurs in planetary atmospheres.

Pancake structures found in the terrestrial equatorial stratopause are considered to
be an inertial instability phenomenon (Hitchman et al. 1987; Hayashi, Shiotani &
Gille 1998). The reason is that pancake structures have similar characteristics to the
zonally non-symmetric unstable modes which Dunkerton (1983) obtained and argued
to be inertial instability. Using general circulation models for Venus and Titan, it
was shown that the equatorial regions of both atmospheres can be inertially unstable
(Allison, Del Genio & Zhou 1994). In addition, for the Jovian planets it was argued
that inertial instability contributes to maintaining the upper-layer zonal wind profiles
through the mixing of angular momenta (Allison, Del Genio & Zhou 1995).

Although, based on the results of Dunkerton (1983), pancake structure is considered
to be caused by inertial instability, it has not been determined whether the zonally
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non-symmetric unstable modes that he obtained can be considered to be the same kind
of instability as the symmetric inertial instability. Inertial instability in the equatorial
region has been addressed by Dunkerton (1981) and by Stevens (1983). With a zonally
symmetric basic flow on an equatorial β-plane, they showed that symmetric inertial
instability occurs if there exists a region where the product of the Coriolis parameter
and potential vorticity is negative (hereinafter, referred to as the ‘inertially unstable
region’). Following these studies, several authors investigated zonally non-symmetric
unstable modes. Boyd & Christidis (1982) considered that the equatorial Kelvin wave
is destabilized in equatorial shear flow, and that the instability of the Kelvin wave in
strong shear flow corresponds to inertial instability. Dunkerton (1983) showed that
the non-symmetric modes have large amplitudes in inertially unstable regions, and
regarded the modes as inertially unstable modes. Clark & Haynes (1996), through
an asymptotic expansion in wavenumber, obtained a condition that non-symmetric
modes dominate over symmetric modes. However, a physical interpretation of the
correspondences of the destabilized Kelvin wave (Boyd & Christidis 1982) and non-
symmetric modes (Dunkerton 1983; Clark & Haynes 1996) to symmetric inertially
unstable modes are not given in those papers.

Moreover, although there is the possibility that inertial instability occurs in many
planetary atmospheres, no attempts have been made to explore unstable modes over
a wide range of parameters. It is unclear whether there exists an unstable mode other
than the destabilized Kelvin wave discussed by Boyd & Christidis (1982). In systems
involving an equatorial region and a higher latitudinal region, many types of unstable
mode were found (Winter & Schmitz 1998; Iga & Matsuda 2005). However, little
interpretation of these unstable modes was given in previous studies, since their basic
states were complicated because they attempted to model real atmospheres.

Unstable modes are often interpreted by the use of the concept that an instability is
caused by interaction between neutral waves satisfied with certain conditions (Cairns
1979; Hayashi & Young 1987; Iga 1999c). According to the concept, an unstable
mode is considered to result from the resonance of two neutral waves which have
opposite signs of pseudomomenta and the same values of phase speed. Exchange of
pseudomomenta between neutral waves causes the growth of an unstable mode, while
pseudomomentum of the whole system is conserved. When the resonance of neutral
waves occurs, their dispersion curves intersect at a certain wavenumber (Hayashi &
Young 1987). For the wavenumber in a stable region, there exist dispersion curves of
two neutral waves with opposite signs of pseudomomenta. For a wavenumber with
which instability occurs, dispersion curves of the growing mode and the decaying mode
coincide with each other. Consequently, observation of dispersion curves enables us
to identify the neutral waves which cause instability. This concept successfully yields
physical interpretations for unstable modes in one-layer problems (Kubokawa 1986;
Hayashi & Young 1987) and in two-layer problems (Iga 1993, 1997). Not only non-
singular modes, but also singular (i.e. continuous) modes resonate with other modes
and yield unstable modes. Iga (1999a) showed that a superposition of continuous
modes yields unstable modes by resonating with neutral modes in the critical-layer
instability problem. The unstable modes obtained by him are caused by resonance
between the first Poincaré modes and a superposition of continuous modes in a
two-layer model. The signs of pseudomomenta for neutral modes and continuous
modes are, respectively, determined by the gradient of the dispersion curve and by
the gradient of the potential vorticity of a basic flow (Iga 1999a,b).

In this paper, unstable modes in a linear shear flow on an equatorial β-plane are
obtained over a wide parameter range by solving an eigenvalue problem. Based on the
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results of the eigenvalue problem, interpretations of the unstable modes are given by
the use of the concept of resonance between neutral waves (Hayashi & Young 1987;
Iga 1995). In light of these results, we discuss whether the non-symmetric unstable
modes obtained by Boyd & Christidis (1982) and Dunkerton (1983) are similar to
inertially unstable modes obtained by Dunkerton (1981) and Stevens (1983).

This paper is organized as follows. The system and basic equations are explained
in § 2. Section 3 presents the calculated eigenvalues and the structures of unstable
modes. Dispersion curves of unstable modes are examined according to the concept
of resonance between neutral waves in § 4. In § § 5 and 6, respectively, resonating
equatorial Kelvin modes and resonating mixed Rossby–gravity modes are examined.
In § 7, the results are summarized, and the correspondence of non-symmetric unstable
modes to symmetric inertially unstable modes is discussed.

2. Basic equations
Our basic equations are the horizontal structure equations of a primitive system

using an equatorial β-plane approximation (Stevens 1983); dissipation is excluded.
At both the north and south boundaries, meridional velocities are set to zero. The
x- and y-axes are along the longitudinal and meridional directions, respectively. The
equator is located at y = 0. Our system is equivalent to a shallow-water channel on
an equatorial β-plane.

By expanding variables in zonal harmonics in the same manner as Dunkerton
(1993), the non-dimensional perturbation equations linearized about the linear shear
flow are:

−(ω − kū)u + (1 − y) v = −kφ, (2.1)

(ω − kū)v + yu = −∂φ

∂y
, (2.2)

−(ω − kū)φ +
1

E

(
ku +

∂v

∂y

)
= 0, (2.3)

where u(y), u, v and φ are the basic zonal velocity, perturbation zonal velocity,
meridional velocity and geopotential, respectively. Meridional velocity v is defined to
be out of phase with u and φ. k and ω (≡ ωr + iωi) are zonal wavenumber and complex
frequency, respectively. Linearized perturbation equations are non-dimensionalized
by the length scale γ /β , which is the latitudinal width of the inertially unstable
region, time scale γ −1, velocity scale γ 2/β , and geopotential scale γ 4/β2; β ≡ df/dy

(f is the Coriolis parameter) and γ ≡ ∂u/∂y. The only non-dimensional parameter
is E ≡ γ 4/(gHβ2), where g and H are gravitational constant and equivalent depth,
respectively. The non-dimensional parameter E corresponds to four powers of the
ratio of γ /β to equatorial radius of deformation (gH )1/4/

√
β .

In this paper, we adopt

ū(y) = y + 2, (2.4)

as the basic zonal flow (figure 1). In this basic flow, an inertially unstable region exists
in the region of 0 � y � 1. Shear instability does not occur, since the condition of Kuo
(1949) is not satisfied.

The calculation domain is −2 � y � 3 (figure 1). The eigenvalue equations, (2.1) to
(2.3), are solved by discretizing in the y-direction with 64 grid points. Supplementary
calculations for the cases with a calculation domain of −3 � y � 3 and −2 � y � 5,
and for the cases with 128 and 512 grid points are also performed. Differences of the
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Figure 1. Meridional profile of the basic flow: u = y + 2. Horizontal and vertical axes are
velocity and y, respectively. The shaded area indicates the inertially unstable region.

results from those shown in the following sections are not so large that we need to
alter our conclusions. The maximum zonal wavenumber is 1, which corresponds to
the short-wave cutoff (Boyd & Christidis 1982; Dunkerton 1983). Values of E within
the range of −2.50 � log E � 7.50 (i.e. 3.16 × 10−3 � E � 3.16 × 107) are considered.

3. Numerical results of the eigenvalue problem
Figure 2 shows non-dimensional growth rates ωi of unstable modes as a function

of E and k. Unstable modes appear in the range log E � − 1.00 in our system.
However, as described in the next section, the critical value at which unstable modes
appear changes according to the meridional width of the calculation domain. For
−1.00 � log E � 1.20, only zonally non-symmetric (k �= 0) modes are destabilized.
Wavenumbers of the most unstable modes oscillate in the range of −0.90 � log E �
− 0.20 and have a discontinuity at log E ∼ −0.20; the reasons for this are discussed
in § 5. Symmetric (k =0) unstable modes arise for log E � 1.20. This value of log E

corresponds to the critical value, obtained by Stevens (1983), at which symmetric
inertially unstable modes appear. For 1.20 � log E � 2.00, non-symmetric unstable
modes dominate symmetric modes, while symmetric unstable modes dominate non-
symmetric modes for log E � 2.00. The value of log E � 2.00 corresponds to the
critical value obtained by Clark & Haynes (1996) at which the fastest growing mode
exchanges to non-symmetric modes from symmetric modes.

In the following, we examine the horizontal structure of the most unstable mode
for each value of E. Figure 3 shows the horizontal structures of u, v and φ and the
amplitudes of the terms in equations (2.1) to (2.3) of a typical most unstable mode
for a value of log E � 2.00. The structure shown in figure 3(a) is equivalent to that of
zonally symmetric inertially unstable modes discussed by Stevens (1983): (i) u and v

have opposite signs in the unstable region; (ii) amplitudes of u and v have extrema
near the dynamic equator (the latitude of the centre of the inertially unstable region,
Boyd 1978); and (iii) the amplitude of φ has extrema on either side of the dynamic
equator within the inertially unstable region. The time evolution of u is determined
by v(1 − y) (figure 3b). This term causes the growth of u, since (1 − y) is positive
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Figure 2. Non-dimensional growth rate ωi as a function of k and E. The most unstable mode
for each value of E is indicated by an open circle. The solid line, dotted line, and dash-dotted
line indicate, respectively, log E = − 1.00 at which non-symmetric unstable modes emerge,
log E = 1.20 at which symmetric unstable modes emerge, and log E = 2.00 at which symmetric
modes become the most unstable. Contour interval is 2 × 10−2.

throughout the inertially unstable region and v has the opposite sign to that of u.
In figure 3(c), the Coriolis force overcomes the pressure gradient force. The Coriolis
term amplifies v, since u has the opposite sign to v. Figure 3(d) shows that the time
evolution of φ is due to (1/E)(∂v/∂y). The structure of v with its large amplitude at
the dynamic equator leads to the amplification of ∂v/∂y on either side of the dynamic
equator within the unstable region, and to the growth of φ there.

Figure 4 shows one of the most unstable modes in the range 1.20 � log E � 2.00.
This mode corresponds to the non-symmetric unstable modes obtained by Boyd &
Christidis (1982) and Dunkerton (1983). For these values of log E, zonally non-
symmetric modes are the most unstable. The horizontal structure of the mode
(figure 4a, e, i) has similar features to that of log E � 2.00: u and v have opposite signs
and the amplitudes have extrema near the dynamic equator. The field of φ, although
deformed by the shear of the basic flow, has an anti-symmetric structure with respect
to the dynamic equator, and the structure is similar to that of the westward mixed
Rossby–gravity wave shown by Matsuno (1966). The time evolution of the mode
is also similar to that of log E � 2.00 in which symmetric modes are dominant: the
growth of u and v are caused by the dominance of the Coriolis term and the opposite
signs of u and v (figure 4a–h), and the growth of φ is caused mainly by (1/E)∂v/∂y

(figure 4i–l).
Figure 5 shows one of the most unstable modes in the range −1.00 � log E � 1.20.

This corresponds to the small shear case discussed by Boyd & Christidis (1982).
Contrary to the modes seen so far, there exists a region in which u and v have
the same sign, and extrema of the amplitudes exist outside the inertially unstable
region. The phase relationship between φ and u, v is similar to that of the eastward
equatorial Kelvin wave. The growing mechanism of the mode is different from those
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Figure 3. Horizontal structure of the most unstable mode with log E = 2.50, k = 0.
(a) Horizontal structure of velocity (vectors) and geopotential φ (contours). Contour intervals
are 0.0025. Dashed contours correspond to negative values. (b) Magnitudes of the terms in
equation (2.1) at x = 0. Lines with indices ‘1’, ‘2’ and ‘3’ indicate −(ω − ku)u, −v(1 − y) and
−kφ, respectively. (c) Magnitudes of the terms in equation (2.2) at x =0. Lines with indices
‘1’, ‘2’ and ‘3’ indicate (ω − ku)v, −yu and −∂φ/∂y, respectively. (d) Magnitudes of the terms
in equation (2.3) at x = 0. Lines with indices ‘1’, ‘2’ and ‘3’ indicate −(ω − ku)φ, −ku/E and

−(1/E)∂v/∂y, respectively. In (b) and (d), the real part of each term multiplied by ieikx is
plotted. In (c), the real part of each term multiplied by eikx is plotted.

of the most unstable modes for log E � 2.00 in which symmetric modes are dominant,
and for 1.20 � log E � 2.00 in which non-symmetric modes are dominant. The growth
of u and v depends on the pressure gradient term as well as on the Coriolis term
(figures 5a–d and 5e–h). Both (1/E)(ku) and (1/E)(∂v/∂y) in equation (2.3) lead to the
development of φ (figure 5i–l). All the most unstable modes for −1.00 � log E � 1.20
show a similar structure to figure 5 near the equator, although the structure of the
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Figure 4. Horizontal structure of the real part of terms in equations (2.1) to (2.3) for the most
unstable mode with log E = + 1.30, k = 0.48. (a) u, (b) −(ω − ku)u, (c) −v(1 − y), (d) −kφ,
(e) v, (f ) (ω − ku)v, (g) −yu, (h) −∂φ/∂y, (i) φ and velocity vector (u, v), (j ) −(ω − ku)φ,
(k) −(ku/E) and (l) −(1/E)(∂v/∂y). In (b)–(d) and (j )–(l), the real part of each term multiplied

by ieikx is plotted. In (f )–(h), the real part of each term multiplied by eikx is plotted. Contour
intervals are 8.00 in (a), 2.00 in (b)–(d), 3.00 in (e), 2.50 in (f )–(h), 0.80 in (i), and 0.25 in
(j )–(l). Dashed contours correspond to negative values.

boundary Kelvin wave emerges near the north boundary for log E ∼ 0 (figures not
shown).

4. Characteristics of dispersion curves
In this section, we examine intersections of dispersion curves and the signs of

the pseudomomenta of modes according to the resonance between neutral waves.
Figure 6(a) shows dispersion curves for log E = − 1.10 in which no unstable mode
exists. Continuous modes exist with c in the range of ū, i.e. 0 � c � 5, and the
discretized versions of these modes can be seen in this figure. The modes with
phase speed (c ≈ 6.0 at k = 0) larger than continuous modes are equatorial Kelvin
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Figure 5. Same as figure 4, but for log E = − 0.40, k = 0.82. Contour intervals are 20.0 in
(a), 40.0 in (b)–(d), 10.0 in (e), 20.0 in (f )–(h), 20.0 in (i), and 50.0 in (j )–(l).

modes. The modes with phase speed smaller than continuous modes are westward
mixed Rossby–gravity modes. These neutral modes can be identified by examining
their structures for the case where the dispersion curves do not intersect those of
continuous modes (figures not shown). In figure 6(a), the boundary Kelvin wave near
the north boundary cannot be recognized, since it assimilates into continuous modes.
For smaller E (figures not shown), its phase speed has a smaller value than those of
continuous modes and the dispersion curves can be observed.

All of the modes in figure 6(a), except for equatorial Kelvin modes, have negative
pseudomomenta as described below and, therefore, the intersection of dispersion
curves does not generate unstable modes. The sign of pseudomomenta of continuous
modes is negative, since continuous modes have pseudomomenta with opposite sign
to the gradient of the potential vorticity of basic flow (Iga 1999a). Pseudomomenta
of westward mixed Rossby–gravity modes are also negative because pseudomomenta
of neutral modes have opposite signs to the gradient of their dispersion curves (Iga
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1999b). The pseudomomentum of the north boundary Kelvin mode that assimilates
into continuous modes is estimated to be negative as follows. If continuous modes
did not exist, the dispersion curve of the north boundary Kelvin mode would have
zero gradient; therefore, its pseudomomentum M could be calculated by equation
(4.1) (Iga 1999b):

M ∼ 1
2

∫
{c − u(y)}|u(y)|2 dy. (4.1)

From this equation, the pseudomomentum of the north boundary Kelvin mode is
negative. We speculate that the sign of the pseudomomentum of the north boundary
Kelvin mode assimilating into continuous modes remains negative.

As mentioned above, no unstable mode exists for log E � −1.00 in our configuration.
However, this result is not generally robust. With a wider calculation domain,
intersection of dispersion curves of equatorial Kelvin modes and continuous modes
occurs even for log E � − 1.00, since continuous modes with larger phase speeds
emerge (figures not shown). If the calculation domain were infinite, intersection of
dispersion curves of equatorial Kelvin modes and continuous modes would occur
for any value of E. This is consistent with the previous result that the equatorial
Kelvin wave is always destabilized in cross-equatorial shear flow (Natarov & Boyd
2001).

Figure 6(b) shows dispersion curves for log E = −0.90 in which only non-symmetric
modes are destabilized. In this figure, unstable modes appear where dispersion curves
of neutral modes and continuous modes intersect. The horizontal structures of modes
leading to the unstable modes are shown in figure 7. The neutral modes leading to
the unstable modes (figure 7a) can be considered as an eastward equatorial Kelvin
wave in shear flow (Boyd 1978), since (i) local extrema of amplitude of φ exist at the
equator; (ii) φ and velocity have symmetric structures with respect to the equator;
(iii) |u| � |v|; and (iv) u and φ have the same phase. Other neutral modes with larger
wavenumber on the same dispersion curve also have the structure of the equatorial
Kelvin wave, although the structures are somewhat distorted (figure not shown). The
resonating counterpart is the superposition of continuous modes, such as the critical-
layer instability problem discussed by Iga (1999a). One of the continuous modes is
shown in figure 7(b). Therefore, the unstable modes are caused by resonance between
equatorial Kelvin modes with positive pseudomomentum and continuous modes with
negative pseudomomentum, and correspond to the unstable Kelvin wave discussed
by Boyd & Christidis (1982).

In the cases of log E = −0.40, 0.30 and 1.00 (figures 6c, 6d and 6e, respectively), the
dispersion curves of the most unstable modes are buried among continuous modes
for all k. Therefore, we cannot identify resonating neutral waves only by these figures.
However, by observing dispersion curves from log E = − 0.90 to log E = 1.00, we can
see that the most unstable modes are also caused by the resonance between equatorial
Kelvin modes and continuous modes. This is confirmed in § 5. In figures 6(c)–6(f ),
other kinds of instabilities can be observed: resonating counterparts of continuous
modes are eastward mixed Rossby–gravity modes or eastward inertial gravity modes.
(Intersections of dispersion curves of westward mixed Rossby–gravity modes and
westward inertial gravity modes with those of continuous modes do not cause
instability, since pseudomomenta of these neutral modes are negative and have
the same sign as those of continuous modes.) In these figures, dispersion curves
of south boundary Kelvin modes can be observed. They consist of the parts of
several curves around c = − 1.20 in figure 6(c), around c = − 0.60 in figure 6(d), and
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Figure 6(a–f ). For caption see facing page.

around c = − 0.20 in figure 6(e). South boundary Kelvin modes do not resonate with
westward mixed Rossby–gravity modes or westward inertial gravity modes, since all
of the modes have negative pseudomomenta.

While the most unstable modes for log E � 1.00 are caused by resonance between
equatorial Kelvin modes and continuous modes, the most unstable modes for



Unstable modes of an equatorial linear shear flow 11

E-MRG Eastward gravity

Westward gravity

E-MRG
Eastward gravity

Westward gravity

Eastward gravity

Westward gravity

Eastward gravity

Westward gravity

P
ha

se
 s

pe
ed

 ω
r/

k

7

6

5

4

3

2

1

0

–1

–2
0 0.2 0.4 0.6 0.8 1.0

(g) 7

6

5

4

3

2

1

0

–1

–2
0 0.2 0.4 0.6 0.8 1.0

Non-dimensional k Non-dimensional k

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

(h)
P

ha
se

 s
pe

ed
 ω

r/
k

7

6

5

4

3

2

1

0

–1

–2

(i) 7

6

5

4

3

2

1

0

–1

–2

( j)

Figure 6. Dispersion curves of neutral and unstable modes. Values of log E are (a) −1.10,
(b) −0.90, (c) −0.40, (d) +0.30, (e) +1.00, (f ) +1.10, (g) +1.20, (h) +1.30, (i) +1.40 and (j )
+2.50. Single and double open circles indicate unstable modes and the most unstable modes,
respectively. In (j ), the most unstable mode with k = 0 is not shown. Open and filled triangles
indicate the positions of dispersion curves of north and south boundary Kelvin modes,
respectively. The labels ‘E-MRG’ and ‘W-MRG’ indicate eastward mixed Rossby–gravity
modes and westward mixed Rossby–gravity modes, respectively.

log E � 1.00 are caused by another type of resonance. One of resonating neutral
modes is westward mixed Rossby–gravity modes, which can be observed in figures 6(e)
and 6(f ). The structure of the mode is shown in figure 8. It has characteristics similar
to that of figure 6(b) of Matsuno (1966). The resonating counterparts of westward
mixed Rossby–gravity modes cannot be identified by examining only figures 6(e)–6(g).
For log E = 1.30, 1.40 and 2.50 (figures 6h, 6i and 6j , respectively), the dispersion
curves of the most unstable modes are buried among continuous modes, and neutral
modes leading to instability cannot be identified. The resonating neutral modes in
these cases are identified in § 6.

Phase speed of the most unstable mode approach basic flow velocity at dynamic
equator, u(y =0.5) = 2.5, in the limit of large E (figure 6j ). This result is consistent
with that of asymptotic expansion by Clark & Haynes (1996). It is also confirmed
that the same result is obtained for the case with a calculation domain which is not
symmetric with respect to the dynamic equator (−3 � y � 3).
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5. Identification of equatorial Kelvin modes
As mentioned in § 4, neutral waves leading to instability cannot be extracted for

larger values of E since the dispersion curves are buried in those of continuous modes.
In this section, we use other methods to identify the dispersion curves of equatorial
Kelvin modes buried in continuous modes. First, we apply two approximations in
order to derive analytically an approximate dispersion relation of equatorial Kelvin
modes for small k. Secondly, we perform numerical calculations for basic flows which
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have a uniform velocity region to extract the dispersion curves of equatorial Kelvin
modes.

5.1. The approximate dispersion relation of equatorial Kelvin modes

In this subsection, we derive the approximate formula of a dispersion relation of
equatorial Kelvin modes using two approximations and extract equatorial Kelvin
modes from continuous modes. First, we assume that

ω − ku(y) � ω − kũ ≡ ω̂, (5.1)

where ũ is a constant value and is set to be the velocity of the basic flow at the
dynamic equator, 2.5. This assumption is consistent with the result of asymptotic
expansion by Clark & Haynes (1996) in the limit of large E. Moreover, we assume
that the horizontal structure of the equatorial Kelvin wave in a shear flow is similar to
that in non-shear flow, and set v to be zero. Strictly speaking, the meridional velocity
v of an equatorial Kelvin wave in shear flow is not zero (Boyd 1978). However,
equatorial Kelvin modes obtained in § 3 have the characteristic of u � v for small
wavenumber. With the above assumptions, equations (2.1) to (2.3) are rewritten as
follows:

−ω̂u = −kφ, (5.2)

yu = −∂φ

∂y
, (5.3)

−ω̂φ = −k
1

E
u. (5.4)

From equations (5.2) to (5.4), the phase speed is given as

c = ũ +
1√
E

. (5.5)

Figure 9 shows the approximate dispersion curve given by equation (5.5) and
the numerically obtained dispersion curves which have been given in § 4. For the
case of log E = − 1.10 (figure 9a), equatorial Kelvin modes can be identified with
numerical results, since their dispersion curve exists above those of continuous modes.
The approximate dispersion curve (blue line in figure 9a) coincides well with the
numerically obtained dispersion curve for 0 <k � 0.20. Therefore, it is expected that
the dispersion curves of equatorial Kelvin modes in the small k range can also be
estimated for the cases where the dispersion curves are buried among continuous
modes. For log E = − 0.40 (figure 9b), the dispersion curve of the most unstable
modes is in good agreement with the approximate dispersion curve in the small k

range. Consequently, the most unstable modes can be considered to be caused by
resonance between equatorial Kelvin modes and continuous modes and to be identical
with the destabilized Kelvin waves discussed by Boyd & Christidis (1982).

However, for log E = 1.00 (figure 9c), the approximate phase speed of equatorial
Kelvin modes deviates from those of the most unstable modes obtained by numerical
calculation. The reason for the deviation for larger values of E has not been fully
examined. We speculate that the existence of westward mixed Rossby–gravity modes
causes the deviation since, as shown in figure 13, the deviation occurs only in the
neighbourhood of log E = 1.00 at which resonating mixed Rossby–gravity modes
emerge. The above results are also obtained for the cases with the domains of
−3 � y � 3 and of −2 � y � 5 (figure not shown). In the next subsection, we directly
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extract the dispersion curves of equatorial Kelvin modes buried among the dispersion
curves of continuous modes.

5.2. Eigenvalue problem for basic flows with a uniform velocity region

In this subsection, we solve eigenvalue problems where part of the basic flow is
distorted and extract equatorial Kelvin modes from continuous modes into which
equatorial Kelvin modes assimilate. On the basis of a theorem of Lin (1945), Iga
(1999c) succeeded in extracting the neutral waves buried among continuous modes
by considering basic flows having a uniform potential vorticity region. However, the
approach used by Iga (1999c) for shallow water on an f -plane is not suitable for our
system since the equatorial neutral waves are eliminated in basic states with a uniform
potential vorticity region. In this paper, the basic states with a uniform velocity region
are considered. In a uniform velocity region, continuous modes are expected to be
excluded and neutral modes can be extracted since phase speed of continuous modes
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is equal to basic state velocity at each discretized grid point. The equatorial waves do
not disappear in this case, since the β-effect remains in the basic state.

Three kinds of basic flow are considered so as to extract neutral modes around
the dispersion curves of the most unstable modes: u with a uniform velocity region
in 1.40 � y � 2.00 for log E = − 0.40 (figure 10a); u with a uniform velocity region
in 0.40 � y � 1.00 for log E =0.30 (figure 10c); and u with a uniform velocity region in
−0.30 � y � 0.30 for log E = 1.30 (figure 10e). With these basic flows, continuous
modes are successfully eliminated in the regions of 3.40 � c � 4.00 for log E = − 0.40
(figure 10b), 2.40 � c � 3.00 for log E = 0.30 (figure 10d), and 1.60 � c � 2.20 for
log E = 1.30 (figure 10f ). For log E = − 0.40 and log E = 0.30, additional unstable
modes emerge at c ≈ 3.70 in figure 10(b) and at c ≈ 2.70 in figure 10(d) because of the
existence of the inflection points of the basic flow. Besides additional unstable modes,
neutral modes can be observed in the region in which no continuous mode exists.
In figure 10(b), dispersion curves of neutral modes exist around 0.20 � k � 0.50 and
3.80 � c � 4.00, and around 0.80 � k � 0.95 and 3.40 � c � 3.60. The neutral modes of
figure 10(d) appear in the region of 0.65 � k � 0.85 and 2.60 � c � 3.00. The horizontal
structure of the neutral mode is shown in figure 11. Although the structure is somewhat
distorted compared with figure 7(a), it has the characteristics of equatorial Kelvin
modes. For other cases with log E � 1.00 in which only non-symmetric modes are
destabilized, it turns out that dispersion curves of the most unstable modes coincide
with dispersion curves of equatorial Kelvin modes for basic flows with uniform
velocity regions (figures not shown). Therefore, it is considered that the most unstable
modes in log E � 1.00 are caused by resonance between equatorial Kelvin modes and
continuous modes.

However, for log E � 1.00, neutral modes do not appear in uniform velocity regions.
In figure 10(f ), neutral modes do not appear, but unstable modes remain in the region
of 1.60 � c � 2.20 in which no continuous mode exists. The dispersion curve of the
unstable modes is similar to the dispersion curve of the most unstable modes in
figure 6(h). In contrast to the cases of log E � 1.00, neutral modes cannot be found
with basic flows with uniform velocity regions when log E � 1.00. The reason for this
is that the most unstable modes in these cases are caused by resonance between two
neutral modes; therefore, unstable modes exist even though continuous modes are
excluded. The resonating neutral waves for log E � 1.00 are discussed in the next
section.

The result that the most unstable modes for log E � 1.00 are caused by resonance
between equatorial Kelvin modes and continuous modes explains the curious
distribution of the most unstable modes in figure 2. The discontinuity of the
most unstable modes at log E ∼ −0.20 is caused by the change of the property of
continuous modes. For log E ∼ −0.20, the north boundary Kelvin wave assimilates
into continuous modes which resonate with equatorial Kelvin modes (figures not
shown). Such discontinuity does not emerge in the case with the wider calculation
domain of −2 � y � 5. In figure 2, it can be seen also that wavenumbers of the
most unstable modes oscillate in the range −0.90 � log E � − 0.20. The oscillation is
caused by the change of combination of continuous modes resonating with equatorial
Kelvin modes whose phase speeds decrease according to the increase of E. In figure 2,
which is obtained with 64 grid points in the y-direction, the change of combination
of continuous modes is emphasized, since the interval of the neighbouring continuous
mode is not small enough. Supplementary calculations with 128 grid points in the
y-direction show a smoother distribution of the most unstable modes in the range
−0.90 � log E � − 0.20 (figure not shown).



16 H. Taniguchi and M. Ishiwatari

(a) (b)

(c) (d)

(e) ( f )

3 7

6

5

4

3

2

1

0

–1

–2

7

6

5

4

3

2

1

0

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6

Non-dimensional kNon-dimensional zonal velocity

0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

–1

–2

7

6

5

4

3

2

1

0

–1

–2

2

–2

–1

0

y

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

EQ

EQ

EQ

y

1

3

2

–2

–1

0

1

y

3

2

–2

–1

0

1

P
ha

se
 s

pe
ed

, ω
r/

k
P

ha
se

 s
pe

ed
, ω

r/
k

P
ha

se
 s

pe
ed

, ω
r/

k

Figure 10. Basic flows with uniform velocity regions (a), (c), (e), and the resulting dispersion
curves (b), (d), (f ). The values of log E are −0.40 for (a) and (b), +0.30 for (c) and (d),
and +1.30 for (e) and (f ). Single red circles and double blue circles in (b), (d), and (f )
indicate unstable modes and the most unstable modes, respectively. Filled triangles indicate
the positions of the dispersion curves of additional unstable modes owing to inflection points
introduced by uniform velocity regions.



Unstable modes of an equatorial linear shear flow 17

3

2

1

y

0

0 2 4 6 8 10
x

12 14 16

0.
02

4
0.048

0.
02

4

0.
02

4

0.
02

4
0.048

0.024

0.024

0.0480.0000
.0

00
.0

00
.0

–1

–2

Figure 11. Horizontal structure of the neutral mode with log E = 0.30 and k = 0.70 for the
basic flow shown in figure 10(c). Contours and vectors indicate φ and the velocity field,
respectively. Contour interval is 0.012. Dashed contours correspond to negative values.

6. Identification of mixed Rossby–gravity modes
In this section, we clarify the resonating neutral waves in the neighbourhood of

log E = 1.20 by the use of the ‘uniform Γ -plane’ approximation (Boyd & Christidis
1982) which gives the approximate formula of the dispersion relations of modes of a
linear shear flow in shallow water on an equatorial β-plane. After reducing equations
(2.1) to (2.3) down to one for v alone, by assuming that

ω − ku(y) � ω − kũ ≡ ω̂, ũ = 2.5, (6.1)

as in § 5.1, terms with order up to O[(k/ω̂)1] in the equation yield

∂2v

∂y2
+

[
− k

ω̂
− E{y(y − 1) − ω̂2}

]
v = 0. (6.2)

Except for the definition of ω̂, equation (6.2) is equivalent to equation (12) of
Boyd & Christidis (1982). Equation (6.2) does not have singular points, and continuous
modes are excluded. Because equation (6.2) can be transformed into Schrödinger’s
equation for the harmonic oscillator, the dispersion relation is obtained as

ω̂3 +

{
1
4

− 1√
E

(2n + 1)

}
ω̂ − k

E
= 0 (n = 0, 1, 2, . . .). (6.3)

With

Q ≡ 1

3

(
2n + 1√

E
− 1

4

)
, (6.4)

R ≡ − k

2E
, (6.5)

S ≡ (
√

R2 − Q3 + |R|)1/3, (6.6)

θ ≡ arccos

(
R√
Q3

)
, (6.7)
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Figure 12(a–d). For caption see facing page.

the solutions of (6.3) are expressed as follows: for Q3 − R2 � 0,

ω̂1 = −2
√

Q cos
θ

3
, (6.8)

ω̂2 = −2
√

Q cos
θ + 2π

3
, (6.9)

ω̂3 = −2
√

Q cos
θ + 4π

3
, (6.10)

and for Q3 − R2 < 0,

ω̂1 = S +
Q

S
, (6.11)

ω̂2 = −1

2

(
S +

Q

S

)
+ i

√
3

2

(
S − Q

S

)
, (6.12)

ω̂3 = −1

2

(
S +

Q

S

)
− i

√
3

2

(
S − Q

S

)
. (6.13)
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Figure 12. Approximate dispersion curves obtained from equations (6.8) to (6.12) for n= 0.
Horizontal and vertical axes are k and c, respectively. The range 0< k � 0.10 is shown. The
values of log E are (a) +1.10, (b) +1.12, (c) +1.14, (d) +1.16, (e) +1.18, (f ) +1.20, (g) +1.22
and (h) +1.24. The light blue lines, dark blue lines, and green lines indicate the dispersion curves
expressed by equation (6.10) (Kelvin modes), equation (6.8) (westward mixed Rossby–gravity
modes), and equation (6.12) (unstable modes), respectively. The purple lines indicate the
dispersion curves expressed by equations (6.9) and (6.11) (eastward mixed Rossby–gravity
modes). Single red circles indicate unstable modes obtained by the numerical calculation in § 4.

The types and the stability of modes change at k which gives Q3 − R2 = 0; k = 0 for
log E = 1.20, k � 0.066 for log E = 1.00, and k � 0.10 for log E = 0.90, where n= 0.
Q3 − R2 � 0 corresponds to the case of small k, if E and n are fixed. In this case,
eigen-solutions are three neutral modes. Q3 − R2 < 0 corresponds to the case of large
k. In this case, eigen-solutions consist of neutral modes with ω̂1, unstable modes with
ω̂2, and decaying modes with ω̂3. The phase speed of each mode is expressed as
c = Re(ω̂)/k + ũ.

Figure 12 shows the approximate dispersion curves of n= 0 modes given by
equations (6.8) to (6.12) and the numerical results obtained with equations (2.1)
to (2.3) in the neighbourhood of log E =1.20. For 1.10 � log E � 1.18 (figure 12a–e),
approximate solutions consist of three neutral modes (purple lines, light blue lines,
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dark blue lines) in the small k region, and of neutral modes (purple lines), unstable
modes (green lines), and decaying modes (figures not shown) in the large k region.
The three neutral modes in the small k region are identified as follows: purple lines
are eastward mixed Rossby–gravity modes, light blue lines are equatorial Kelvin
modes, and dark blue lines are westward mixed Rossby–gravity modes. The neutral
modes for large k are eastward mixed Rossby–gravity modes. The identifications
of the neutral modes mentioned above are based on the correspondence of the
approximate dispersion curves obtained by equations (6.8) to (6.13) to the numerically
obtained solutions that were identified in previous sections. The dispersion curve of
the equatorial Kelvin mode (light blue lines) is distorted and the phase speed becomes
negative for 1.10 < log E < 1.20 (figure 12a–e). This is discussed in the last paragraph
of this section.

The numerically obtained unstable modes for log E = 1.10 (figure 12a) are
interpreted as follows. For small k, near the dispersion curve of the unstable modes
obtained by numerical calculation, only the dispersion curve of equatorial Kelvin
modes (light blue line) exists. The dispersion curve of westward mixed Rossby–
gravity modes (dark blue line) exists away from the dispersion curves of the most
unstable modes. These do not suggest that unstable modes obtained by numerical
calculation are caused by resonance between two neutral waves. It can be considered
that numerically obtained unstable modes are caused by resonance between equatorial
Kelvin modes and continuous modes since continuous modes are excluded in equation
(6.2). On the other hand, for large k, unstable modes (green line) emerge at the points
of intersection of the approximate dispersion curves of equatorial Kelvin modes
(light blue line) and westward mixed Rossby–gravity modes (dark blue line). The
dispersion curve of the numerically obtained unstable modes (red line) coincides
with the approximate dispersion curve of unstable modes, hence, unstable modes for
large k can be considered to be caused by the resonance between equatorial Kelvin
modes and westward mixed Rossby–gravity modes. The results above show that two
types of resonance coexist on the dispersion curves of the most unstable modes.
(Coexistence of resonance types on the dispersion curves of the most unstable modes
occurs for 1.00 � log E � 1.20, which is suggested by figures similar to figure 13 except
for the large k case (figures not shown).) The resonance type of the most unstable
mode changes at log E ∼ 1.00 for non-small k values; the most unstable modes are
caused by resonance between equatorial Kelvin modes and continuous modes for
log E � 1.00 and by resonance between equatorial Kelvin modes and westward mixed
Rossby–gravity modes for log E � 1.00.

As the value of E increases, unstable modes caused by resonance between equatorial
Kelvin modes and westward mixed Rossby–gravity modes appear at smaller k

(figure 12a–e). In figure 12(b), unstable modes caused by resonance between equatorial
Kelvin modes and continuous modes still exist near the dispersion curve of equatorial
Kelvin modes (light blue line). (In figure 12(b), only one unstable mode appears at
k ≈ 0.01. However, it can be considered that more unstable modes actually exist near
the light blue line in the small k region, since more unstable modes are obtained
in supplemental calculation with 512 grids in the y-direction.) Contrary to this, in
figures 12(c)–12(e), no unstable mode emerges along the the dispersion curve of
equatorial Kelvin modes, since the dispersion curve of equatorial Kelvin modes exists
below those of continuous modes. For log E = 1.20 (figure 12f ) at which symmetric
inertially unstable modes appear, a root of Q3 − R2 = 0 for n=0 is k =0. The
dispersion curves of equatorial Kelvin modes and westward mixed Rossby–gravity
modes combine into one dispersion curve over the entire range of k to generate



Unstable modes of an equatorial linear shear flow 21

unstable modes (green line) and decaying modes (figures not shown). This discussion
is consistent with the result that neutral modes cannot be extracted for distorted
basic flows in which continuous modes are excluded for values of log E � 1.00 (§ 5.2).
For larger values of E (figure 12g–h), only the resonance between equatorial Kelvin
modes and westward mixed Rossby–gravity modes emerges.

The intersections of the dispersion curves of equatorial Kelvin modes and westward
mixed Rossby–gravity modes can be observed more clearly in the (log E, c)-plane with
fixed k (figure 13). Figure 13(a) shows the approximate dispersion curves (blue line)
of equatorial Kelvin modes given by equation (5.5) and the numerically obtained
dispersion curves on the (log E, c)-plane for k = 0.01. (Isolated two unstable modes
near c ∼ 5.0 at log E ∼ 1.40 and log E ∼ 1.80 are spurious modes caused by numerical
errors. These modes do not emerge in supplementary calculation with the domain
of −2 � y � 5.) For −1.00 � log E � 1.20, equatorial Kelvin modes resonate with
continuous modes, which causes unstable modes. For log E � 1.20, the dispersion curve
of equatorial Kelvin modes intersects that of westward mixed Rossby–gravity modes,
and the resonance of these neutral waves causes instability. This type of resonance
occurs at log E ≈ 1.00 for cases of larger k (figure 13b, c). As described above, by
observing dispersion curves on the (log E, c)-plane, it can be shown more clearly that
zonally non-symmetric unstable modes for log E � 1.20 are caused by the resonance
between equatorial Kelvin modes and westward mixed Rossby–gravity modes.

The modes whose dispersion curves exist near light blue line have been identified as
equatorial Kelvin modes, although their dispersion curves are considerably distorted
(especially, figures 12d and 12e). The distortion of the dispersion curve is considered
to result from the occurrence of instability at the large k region. Simultaneously,
the occurrence of instability deforms the structure of equatorial Kelvin modes.
Figure 14 shows the structure of the neutral mode with k = 0.005, c = − 1.90 in
figure 12(d) (log E = 1.16). Although the modes certainly have a Kelvin-wavelike
structure to the south of the dynamic equator, the structure of the westward
mixed Rossby–gravity wave can also be observed to the north of dynamic equator.
This suggests that equatorial Kelvin modes are deformed and have features of the
westward mixed Rossby–gravity wave because of instability at the large k region. The
deformed equatorial Kelvin modes emerge as n= 0 modes in the uniform Γ -plane
approximation.

7. Summary and discussion
An eigenvalue problem for a linear shear flow in a shallow-water system on an

equatorial β-plane is solved over a wide range of values of E. For log E � 1.20,
only zonally non-symmetric unstable modes exist. The most unstable modes for
log E � 1.00 are caused by the resonance between equatorial Kelvin modes and
continuous modes. The most unstable modes for 1.00 � log E � 1.20 are caused by
the resonance between equatorial Kelvin modes and westward mixed Rossby–gravity
modes. For 1.20 � log E � 2.00, the most unstable modes have zonally non-symmetric
structures, although zonally symmetric unstable modes also appear. The most unstable
modes are caused by the resonance between equatorial Kelvin modes and westward
mixed Rossby–gravity modes. For log E � 2.00, zonally symmetric unstable modes
are the most unstable. Other types of resonance occur, depending on the value of
E: eastward mixed Rossby–gravity modes and continuous mode; eastward mixed
Rossby–gravity modes and westward mixed Rossby–gravity modes; eastward inertial
gravity modes and continuous modes; and eastward inertial gravity modes and
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Figure 13. Dispersion curves on the (log E, c)-plane for (a) k = 0.01, (b) k = 0.05 and (c)
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Figure 14. Horizontal structure of numerically obtained neutral mode (corresponds to light
blue line in figure 12d) for log E = +1.16, k = 0.005, c = −1.90. Contours and vectors indicate
φ and the velocity field, respectively. Contour interval is 0.025.

westward inertial gravity modes. Although equatorial Rossby modes do not emerge in
our discussions, equatorial Rossby modes actually exist. All equatorial Rossby modes
are considered to assimilate into continuous modes, since detailed observations of
mode structures show that some continuous modes have Rossby wavelike structure
(figures not shown).

The zonally symmetric unstable modes obtained for log E > 1.20 are inertially
unstable modes discussed by Stevens (1983). In figures 12f –12h, it seems that the
unstable modes with k =0 exist on the dispersion curves of non-symmetric unstable
modes caused by the resonance between equatorial Kelvin modes and westward mixed
Rossby–gravity modes. This suggests that the instability caused by the resonance
between these two neutral waves is the same kind of inertial instability. Although
modes with k =0 cannot be drawn on the (k, c)-plane, the connection of the dispersion
curves of non-symmetric modes to symmetric modes can be examined on the (k, ωr )-
plane. Figure 15 shows the dispersion relations ωr (k) for log E = 1.30. The unstable
mode of k =0 certainly exists on the dispersion curve of the most unstable modes
caused by the resonance between equatorial Kelvin modes and westward mixed
Rossby–gravity modes. In addition, the approximate complex frequency of this non-
symmetric unstable mode given by equation (6.12) coincides with that obtained by
Stevens (1983) if k → 0. Therefore, the non-symmetric unstable modes caused by
the resonance between equatorial Kelvin modes and westward mixed Rossby–gravity
modes, which are identical to the unstable modes obtained by Boyd & Christidis
(1982) and Dunkerton (1983), can be considered to be the same kind of instability as
the inertially unstable modes obtained by Dunkerton (1981) and Stevens (1983). The
result that non-symmetric unstable modes for log E � 1.20 connect with symmetric
modes is consistent with that of asymptotic expansion by Clark & Haynes (1996).
The non-symmetric modes caused by the resonance between equatorial Kelvin modes
and westward mixed Rossby–gravity modes can be considered to correspond to
non-symmetric modes obtained by Clark & Haynes (1996).
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Figure 15. Dispersion curves for log E = 1.30 on the (k, ωr )-plane. Single red circles and
double blue circles indicate unstable modes and the most unstable modes, respectively.

Our discussions using the concept of resonance of neutral waves does not give any
conclusion that contradicts the results obtained by the ordinary instability theory. As
for energetics of unstable modes, in the ordinary instability theory, it is often argued
that disturbances gain their energy from the shear of mean flow. For resonance of
neutral waves, energetics of unstable modes is described in terms of pseudoenergy.
Pseudoenergy (or disturbance energy; Hayashi & Young 1987) is defined as the
amount of energy in the fluid when the mode is excited minus the amounts in
the unperturbed state, or in other words, the sum of the wave energy and that in
the modified mean flow. Therefore, exchange of pseudoenergy is just another view
of energy transfer from basic flow to growing disturbance. The additional results
obtained by introducing the concept of resonance are a unified view for many kinds
of unstable modes, the classification and the identification of unstable modes, which
are supplements to the ordinary instability theory.

It remains to be solved whether pancake structures observed in the terrestrial middle
atmosphere can be identified as inertial instability. Griffiths (2003) shows that the
large vertical wavelength of observed pancake structures cannot be obtained by linear
modes in a shallow-water system. This suggests that the results of the shallow-water
model cannot be applied directly to an observed pancake structure. Griffiths (2003)
points out the importance of a secondary Kelvin–Helmholtz instability. Examination
for correspondence of unstable modes obtained in this paper to pancake struc-
ture requires reconsideration of the unstable modes in a three-dimensional system
with the effect of Kelvin–Helmholtz instability, dissipation, and other effects. Further
investigation is necessary in order to describe pancake structure in terms of linear
unstable modes.

Our results show that many kinds of instability appear in the equatorial region.
The type of mode that is most unstable and the induced circulation structure change
according to external parameters. A change in E means a change in β if other
parameters are fixed. Consequently, types of instability other than those observed
in the terrestrial atmosphere can be discovered in the atmospheres of planets with
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rotation rates different from that of Earth. Venus has a low rotation rate, and its
atmosphere may be in a situation corresponding to cases of large E. If this is
the case, zonally symmetric inertially unstable modes would tend to occur in the
Venusian atmosphere. On the other hand, atmospheres on rapidly rotating planets
such as Jupiter may be in a situation of small E. On Jovian planets, unstable modes
due to the resonance between equatorial Kelvin modes and continuous modes can be
discovered.

Several methods are used in this paper to identify resonating neutral waves. Among
these, the calculation using basic flows with uniform velocity regions seems to be the
most effective for extracting neutral modes. By excluding continuous modes, the
resonating waves can be deduced: equatorial Kelvin modes and continuous modes
for log E < 1.00, and equatorial Kelvin modes and westward mixed Rossby–gravity
modes for log E � 1.00. However, it has not been proved theoretically that continuous
modes can be excluded and neutral modes can be extracted using distorted basic
flows that have a uniform velocity region on an equatorial β-plane. We anticipate
that the problem can be solved in a manner similar to the proof of the theorem in
Lin (1945). We expect that the exclusion of continuous modes with distorted basic
flows will be effective for identifying resonating waves not only for an equatorial
β-plane, and that other kinds of unstable modes can be interpreted using the concept
of resonance between neutral waves.

The authors wish to express their thanks to the anonymous reviewers for valuable
comments on the original manuscript. The LAPACK library (http://www.netlib.org/
lapack/) was used for solving the eigenvalue problems and the GFD-DENNOU
library (http://www.gfd-dennou.org/arch/dcl/) was used for drawing the figures.
This work is based in part on H.T.’s PhD dissertation at Hokkaido University.
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